Saturday, 18 February 2017

Für Die Trendvorhersage Wird Ein Einfaches Gleitendes Durchschnittsmodell Verwendet

Forecasting mit Zeitreihenanalyse Was ist Forecasting Forecasting ist eine Methode, die in der Zeitreihenanalyse umfassend eingesetzt wird, um eine Antwortvariable, wie monatliche Gewinne, Bestände oder Arbeitslosenzahlen, für einen bestimmten Zeitraum vorherzusagen. Prognosen basieren auf Mustern in bestehenden Daten. Zum Beispiel kann ein Lagerverwalter modellieren, wie viel Produkt zu bestellen für die nächsten 3 Monate auf der Grundlage der letzten 12 Monate der Aufträge. Sie können eine Vielzahl von Zeitreihenmethoden wie Trendanalyse, Zerlegung oder einzelne exponentielle Glättung verwenden, um Muster in den Daten zu modellieren und diese Muster in die Zukunft zu extrapolieren. Wählen Sie eine Analysemethode, ob die Muster statisch (konstant über die Zeit) oder dynamisch (Veränderung über die Zeit), die Art der Trend - und Saisonkomponenten und wie weit Sie prognostizieren möchten. Bevor Sie Prognosen erstellen, passen Sie mehrere Kandidatenmodelle an die Daten an, um zu bestimmen, welches Modell am stabilsten und genau ist. Prognosen für eine gleitende Durchschnittsanalyse Der Anpassungswert zum Zeitpunkt t ist der nicht zentrierte gleitende Durchschnitt zum Zeitpunkt t -1. Die Prognosen sind die angepassten Werte am Prognoseursprung. Wenn Sie 10 Zeiteinheiten prognostizieren, wird der prognostizierte Wert für jedes Mal der passende Wert am Ursprung sein. Für die Berechnung der gleitenden Mittelwerte werden Daten bis zum Ursprung verwendet. Sie können die lineare Bewegungsdurchschnittsmethode verwenden, indem Sie fortlaufende gleitende Mittelwerte berechnen. Die Linear Moving Averages Methode wird oft verwendet, wenn es einen Trend in den Daten. Zuerst berechnen und speichern Sie den gleitenden Durchschnitt der Originalreihe. Dann wird der gleitende Durchschnitt der zuvor gespeicherten Spalte berechnet und gespeichert, um einen zweiten gleitenden Durchschnitt zu erhalten. Bei der naiven Prognose ist die Prognose für die Zeit t der Datenwert zum Zeitpunkt t -1. Mit gleitenden Durchschnitt Verfahren mit einem gleitenden Durchschnitt der Länge ein gibt naive Prognose. Prognosen für eine einzelne exponentielle Glättungsanalyse Der eingepasste Wert zum Zeitpunkt t ist der geglättete Wert zum Zeitpunkt t-1. Die Prognosen sind der passende Wert am Prognoseursprung. Wenn Sie 10 Zeiteinheiten prognostizieren, wird der prognostizierte Wert für jedes Mal der passende Wert am Ursprung sein. Für die Glättung werden Daten bis zum Ursprung verwendet. In naiver Prognose ist die Prognose für die Zeit t der Datenwert zum Zeitpunkt t-1. Führen Sie einzelne exponentielle Glättung mit einem Gewicht von einem zu tun naive Prognose. Prognosen für eine doppelte exponentielle Glättungsanalyse Die doppelte exponentielle Glättung nutzt die Pegel - und Trendkomponenten, um Prognosen zu generieren. Die Prognose für m Perioden, die vor einem Zeitpunkt t liegen, ist L t mT t. Wobei L t der Pegel ist und T t der Trend zur Zeit t ist. Für die Glättung werden Daten bis zur Prognoseursprungzeit verwendet. Prognosen für Winters-Methode Die Winters-Methode verwendet die Pegel-, Trend - und Saisonkomponenten, um Prognosen zu generieren. Die Prognose für m Perioden vor einem Punkt zum Zeitpunkt t ist: wobei L t der Pegel ist und T t der Trend zum Zeitpunkt t ist, multipliziert mit (oder addiert für ein additives Modell) die saisonale Komponente für die gleiche Periode von der vorheriges Jahr. Winters Methode verwendet Daten bis zur Prognose Ursprungszeit, um die Prognosen zu generieren. Forecasting von Smoothing Techniques Diese Website ist ein Teil der JavaScript E-Labs Lernobjekte für die Entscheidungsfindung. Andere JavaScript in dieser Serie sind unter verschiedenen Bereichen von Anwendungen im Abschnitt MENU auf dieser Seite kategorisiert. Eine Zeitreihe ist eine Folge von Beobachtungen, die zeitlich geordnet sind. Inhärent in der Sammlung von Daten über die Zeit genommen, ist eine Form der zufälligen Variation. Es gibt Methoden zur Verringerung der Annullierung der Wirkung aufgrund zufälliger Variation. Weit verbreitete Techniken sind Glättung. Diese Techniken, wenn richtig angewandt, zeigt deutlicher die zugrunde liegenden Trends. Geben Sie die Zeitreihe Row-weise in der Reihenfolge beginnend mit der linken oberen Ecke und den Parametern ein, und klicken Sie dann auf die Schaltfläche Berechnen, um eine Prognose für eine Periode zu erhalten. Blank Boxen sind nicht in den Berechnungen, sondern Nullen enthalten. Wenn Sie Ihre Daten eingeben, um von Zelle zu Zelle in der Daten-Matrix zu bewegen, verwenden Sie die Tabulatortaste nicht Pfeil oder geben Sie die Tasten ein. Merkmale der Zeitreihen, die durch die Untersuchung seines Graphen aufgezeigt werden könnten. Mit den prognostizierten Werten und dem Residualverhalten, Condition Prognose Modellierung. Moving Averages: Gleitende Durchschnitte zählen zu den beliebtesten Techniken für die Vorverarbeitung von Zeitreihen. Sie werden verwendet, um zufälliges weißes Rauschen aus den Daten zu filtern, um die Zeitreihe glatter zu machen oder sogar bestimmte in der Zeitreihe enthaltene Informationskomponenten zu betonen. Exponentialglättung: Dies ist ein sehr populäres Schema, um eine geglättete Zeitreihe zu erzeugen. Während in den gleitenden Durchschnitten die bisherigen Beobachtungen gleich gewichtet werden, erhält die exponentielle Glättung exponentiell abnehmende Gewichte, wenn die Beobachtung älter wird. Mit anderen Worten, die jüngsten Beobachtungen sind relativ mehr Gewicht in der Prognose gegeben als die älteren Beobachtungen. Double Exponential Smoothing ist besser im Umgang mit Trends. Triple Exponential Smoothing ist besser im Umgang mit Parabeltrends. Ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstanten a. Entspricht in etwa einem einfachen gleitenden Durchschnitt der Länge (d. h. Periode) n, wobei a und n durch a 2 (n1) OR n (2 - a) a verknüpft sind. So würde beispielsweise ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstante gleich 0,1 etwa einem 19 Tage gleitenden Durchschnitt entsprechen. Und ein 40 Tage einfacher gleitender Durchschnitt würde etwa einem exponentiell gewichteten gleitenden Durchschnitt mit einer Glättungskonstanten gleich 0,04878 entsprechen. Holts Lineare Exponentialglättung: Angenommen, die Zeitreihe ist nicht saisonal, sondern zeigt Trend. Holts-Methode schätzt sowohl das aktuelle Niveau als auch den aktuellen Trend. Beachten Sie, dass der einfache gleitende Durchschnitt ein Spezialfall der exponentiellen Glättung ist, indem die Periode des gleitenden Mittelwertes auf den ganzzahligen Teil von (2-Alpha) Alpha gesetzt wird. Für die meisten Geschäftsdaten ist ein Alpha-Parameter kleiner als 0,40 oft effektiv. Man kann jedoch eine Gittersuche des Parameterraums mit 0,1 bis 0,9 mit Inkrementen von 0,1 durchführen. Dann hat das beste Alpha den kleinsten mittleren Absolutfehler (MA Error). Wie man mehrere Glättungsmethoden miteinander vergleicht: Obwohl es numerische Indikatoren für die Beurteilung der Genauigkeit der Prognosetechnik gibt, besteht der am weitesten verbreitete Ansatz darin, einen visuellen Vergleich mehrerer Prognosen zu verwenden, um deren Genauigkeit zu bewerten und unter den verschiedenen Prognosemethoden zu wählen. Bei diesem Ansatz muss man auf demselben Graphen die ursprünglichen Werte einer Zeitreihenvariablen und die vorhergesagten Werte aus verschiedenen Prognoseverfahren aufzeichnen und damit einen visuellen Vergleich erleichtern. Sie können die Vergangenheitsvorhersage von Smoothing Techniques JavaScript verwenden, um die letzten Prognosewerte basierend auf Glättungstechniken zu erhalten, die nur einen einzigen Parameter verwenden. Holt - und Winters-Methoden zwei bzw. drei Parameter, daher ist es keine leichte Aufgabe, die optimalen oder sogar nahezu optimalen Werte durch Versuch und Fehler für die Parameter auszuwählen. Die einzelne exponentielle Glättung betont die kurzreichweite Perspektive, die sie den Pegel auf die letzte Beobachtung setzt und basiert auf der Bedingung, dass es keinen Trend gibt. Die lineare Regression, die auf eine Linie der kleinsten Quadrate zu den historischen Daten (oder transformierten historischen Daten) passt, repräsentiert die lange Reichweite, die auf dem Grundtrend konditioniert ist. Holts lineare exponentielle Glättung erfasst Informationen über die jüngsten Trend. Die Parameter im Holts-Modell sind Ebenenparameter, die verringert werden sollten, wenn die Menge der Datenvariation groß ist, und der Trends-Parameter sollte erhöht werden, wenn die jüngste Trendrichtung durch das Kausale beeinflusst wird. Kurzfristige Prognose: Beachten Sie, dass jeder JavaScript auf dieser Seite eine einstufige Prognose zur Verfügung stellt. Um eine zweistufige Prognose zu erhalten. Fügen Sie einfach den prognostizierten Wert an das Ende der Zeitreihendaten und klicken Sie dann auf die Schaltfläche Berechnen. Sie können diesen Vorgang einige Male wiederholen, um die benötigten Kurzzeitprognosen zu erhalten. Eine Zeitreihe ist eine Folge von Beobachtungen einer periodischen Zufallsvariablen. Beispiele dafür sind die monatliche Nachfrage nach einem Produkt, die jährliche Neueinreichung in einer Abteilung der Universität und die täglichen Flüsse in einem Fluss. Zeitreihen sind wichtig für Operations Research, weil sie oft die Treiber von Entscheidungsmodellen sind. Ein Inventarmodell erfordert Schätzungen zukünftiger Anforderungen, ein Kursterminierungs - und Personalmodell für eine Universitätsabteilung erfordert Schätzungen des zukünftigen Zuflusses von Schülern und ein Modell für die Bereitstellung von Warnungen für die Bevölkerung in einem Flusseinzugsgebiet erfordert Schätzungen der Flussströme für die unmittelbare Zukunft. Die Zeitreihenanalyse liefert Werkzeuge zur Auswahl eines Modells, das die Zeitreihen beschreibt und das Modell zur Prognose zukünftiger Ereignisse verwendet. Das Modellieren der Zeitreihen ist ein statistisches Problem, da beobachtete Daten in Berechnungsverfahren verwendet werden, um die Koeffizienten eines vermeintlichen Modells abzuschätzen. Modelle gehen davon aus, dass Beobachtungen zufällig über einen zugrunde liegenden Mittelwert, der eine Funktion der Zeit ist, variieren. Auf diesen Seiten beschränken wir die Aufmerksamkeit auf die Verwendung von historischen Zeitreihendaten, um ein zeitabhängiges Modell abzuschätzen. Die Methoden eignen sich zur automatischen, kurzfristigen Prognose häufig verwendeter Informationen, bei denen sich die zugrunde liegenden Ursachen der zeitlichen Variation nicht rechtzeitig ändern. In der Praxis werden die von diesen Methoden abgeleiteten Prognosen anschließend von menschlichen Analytikern modifiziert, die Informationen enthalten, die aus den historischen Daten nicht verfügbar sind. Unser Hauptziel in diesem Abschnitt ist es, die Gleichungen für die vier Prognosemethoden zu präsentieren, die im Prognose-Add-In verwendet werden: gleitender Durchschnitt, exponentielle Glättung, Regression und doppelte exponentielle Glättung. Diese werden als Glättungsmethoden bezeichnet. Zu den nicht berücksichtigten Methoden gehören qualitative Prognose, multiple Regression und autoregressive Methoden (ARIMA). Die, die an der umfangreicheren Abdeckung interessiert sind, sollten die Prognoseprinzipien Aufstellungsort besuchen oder ein der ausgezeichneten Bücher auf dem Thema lesen. Wir verwendeten das Buch Prognose. Von Makridakis, Wheelwright und McGee, John Wiley amp Sons, 1983. Um die Excel-Beispiele-Arbeitsmappe zu verwenden, muss das Prognose-Add-In installiert sein. Wählen Sie den Relink-Befehl, um die Links zum Add-In zu erstellen. Diese Seite beschreibt die Modelle für die einfache Prognose und die Notation für die Analyse verwendet. Diese einfachste Prognosemethode ist die gleitende Durchschnittsprognose. Die Methode ist einfach Mittelwerte der letzten m Beobachtungen. Es ist nützlich für Zeitreihen mit einem sich langsam ändernden Mittelwert. Diese Methode berücksichtigt die gesamte Vergangenheit in ihrer Prognose, aber wiegt jüngste Erfahrungen stärker als weniger jüngste. Die Berechnungen sind einfach, da nur die Schätzung der vorherigen Periode und die aktuellen Daten die neue Schätzung bestimmen. Das Verfahren eignet sich für Zeitreihen mit einem sich langsam ändernden Mittelwert. Die Methode des gleitenden Mittels reagiert nicht gut auf eine Zeitreihe, die mit der Zeit zunimmt oder abnimmt. Hierbei handelt es sich um einen linearen Trendbegriff im Modell. Das Regressionsverfahren nähert sich dem Modell durch Konstruktion einer linearen Gleichung an, die die kleinsten Quadrate an die letzten m Beobachtungen anpasst.


No comments:

Post a Comment